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The classical solutions of  conformal invariant field 
theories have been the object of  several interesting 
recent investigations. Two important examples are the 
neutral scalar field equation 

[30 +gq~3 = 0 ,  (1) 

and the Yang-Mills equation 

3 v F u v = g [ F u v , A v ]  , (2a) 

Fur = 3uA v - OvA u + g [A u, Av] . (2b) 

In the first case the classical solution 

O= 1/-2 2a 
l, g x ~ + a  2 , (3) 

has been suggested recently [1]. 
On the other hand the "instanton" solution [2] of  

eqs. (2) 

2i Y~u~ x~ 
A ,  - (4 a) 

g x 2 + a 2 ' 

4i  a2 ~;uu 
Fur g (x 2 + a 2 ) 2 '  (4b) 

has received a great amount of  interest* ~. 
The similarity between the expressions (3) and (4) 

~l The Euclidean metric is r 2 = 22 +x~],rn = V 2 + (O/ax4)2. If 
we set x4 = iXo, we get the Minkowski metric r 2 = 2 -2 - x~, 
[] = V 2 _ (a/axo) 2. 

has a deep group theoretical origin. It has indeed been 
shown [1,3] that they are both invariant under an 0 (5 )  
subgroup of  the 0 (5 ,  1) (Euclidean) conformal group. 

As a consequence of  their common root, many of  
their properties are similar: both expressions are non- 
singular and integrable only in the framework of  a 
Euclidean field theory, and in both cases the energy 
momentum tensor vanishes. 

The particular interest of solution (4) of  the Yang-  
Mills equation follows from the presence (in addition 
to conformal invariance) of  invariance under a group 
of non-Abelian gauge transformations. 

A very important property is that, although the field 
F~v has a fast convergence at large distances, the po- 
tential A u converges much more slowly towards a pure 
gauge term. 

A u _ + - 2 i  ~u~ x ~ _  1 f - 1  ~.. 
g x 2 g oxu f '  

(5) 

f = (aux U/r),  (6) 

A remarkable consequence of  this fact is seen by 
considering the pseudoscalar density 

D(x)  = (1/64n 2) Tr eUWflFuuFao , (7) 

which is the divergence of the operator I u : 

(3IU/Ox") = D ,  (8) 

I ~ = ( euva f l / 16n2)Tr{Av(8aAf l+}gAaA¢l ) } .  (9) 

163 



Volume 65B, number 2 PHYSICS LETTERS 8 November 1976 

Because of the slow convergence of the field Au, one 
finds that the Pontryagin number, 

q = g2 f d4x , D = g2 f I " d %  , (10) 

is different from zero and can take the values +-1. 
The beautiful and exciting features of the classical 

solutions (4) are suggesting that a systematic investi- 
gation of a larger class of classical solutions might 
lead to a more general understanding of the properties 
of non-Abelian field theories. 

In this direction, we wish to point out the existence 
of a different kind of solutions of the conformal invari- 

and eqs. (1) and (2), whose properties are in a certain 
way complementary to solutions (3) and (4). 

Let us start from the scalar case and look for an ele- 
mentary solution which, at the same time, is Lorentz 

hwariant and possesses simple dilatation properties. It 
is easily seen that 

~ _  1 1 r = x / ~ - ,  ( l l )  x/~y' 
is one such solution. Even in a Euclidean space, solu- 
tion (11) is not acceptable, since it is singular both for 
r = 0 and r = co [which are the characteristic points of 

the O(1,1)  dilatation group]. We can, however, im- 
prove this solution by using a conformal transforma- 
tion in order to shift the singularities to two arbitrary 
positions u and v. We shall thus get 

1 l / ( r  ( u - v )  2 

 --,Tgg (12) 

One can choose without loss of generality u = - v  = a 

2 a 
- (13) 

.V/(X ± ,)2(X + a)2 

We can now go to the physical Minkowski space by 
writing x 4 = ixo, and orient the vector a u along the 
time direction, a u = (1, O, O, 0). Our solution becomes 

2 1 
q~ - , (14) 

+ d ) ( 1  + t2)  

where t_+ = x 0-+ ]xl are the advanced, retarded times, 
respectively. Solution (14) is regular everywhere and 
gives rise to a finite action in the Minkowski space. 

The form of solution (14), which is due to Castell 
[4], has a simple interpretation in the framework of 

the conformal group. If we introduce the six-dimen- 
sional co-ordinates 

~i = xi (i = 1,2,  3) ; G0 = x0 ; 

~5 = ½ ( l + x 2 -  x2) " ~6 =½(1 x2 + x 2 ) ,  

+ + = 0, 
we can write solution (14) in the form 

1 1 
~= , (15) 

x/g V/(~6 + i~0) (~6 -- i~0) 

exhibiting invariance under the compact 0 (4 )  × 0 (2 )  
subgroup made out of the (1 ,2 ,3 ,  5) × (0,6) rotations .2 

This is the largest compact subgroup contained in the 
Minkowski conformal group. 

We wish now to derive the analogue of the scalar 

solution (13) for the case of the Yang-Mills equation. 
Let us start from the solution of eqs. (2) which has 
simple properties under the Lorentz and dilatation 
group. It is indeed quite easy to find the following so- 
lutions * 3 

i ~;~c~ xc~ 
A u - g x 2 , (16a) 

l[s-,uo~xa, Z v 3 x 3 ] [ ~ ]  2 (16b) 

It is important to notice that our solution can be 
written in the form 

A u = ~ g f - l o u f .  (17) 

The appearance of the factor ½ as compared to the 

+5 

1:3 

The general six-dimensional form of solution (12) is 

i { / 

where %t and 3~z are arbitrary six-dimensional vectors of zero 
length. Correspondingly the general form of solution (3) is 

O = (~hta) ; h~h~ = 1. 

Solutions (4) and (16) can be derived simultaneously by in- 
serting in eqs. (2) the "ansatz" A,, = - 2 ic ((Nuo:xa)/ 

t ~  - 3 

(a s + xZ)). One is led to the two equations ga2(l - cg) = 0; 
(1 - cg) (½ cg) = 0, which shows that for a # 0 we must 
have cg = 1 whereas in the special case a = 0 we have the 
supplementary solution cg = ½. 
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asymptotic form (5) is essential and it accounts for the 
presence of  a non-vanishing F . v .  

Our solutions ( I6)  are singular both for x . - +  0 and 
x .  -+ ,~. As in the scalar case, we take advantage of  con- 
formal invariance and displace the singular points to 
u and v. After a somewhat cumbersome calculation, 
which also involves a gauge transformation, one gets 

A u = ( - 2 i / g ) S u o ,  s °~ , (18a) 

/;'uv = (4/g)[S,u{~wC~, S,v~w#l ,  (18b) 

where 

So~ ~- 
(x - u) 2 

(x v)~ / 

(x v) 2 / ' 

1 {(~ u)a ( x - v ) a  } (19) 

"~  = ~ 7 u)2 (x - v) ~ 
It is easy to verify, independently of any heuristic 

derivation, that the expressions (I 8) are indeed solu- 
tions of  the Yang-Mills equations (2). Of course, setting 
u -+ 0, v -+ o% one is led back to solution (16). 

Although tile natural framework in which our solu- 
tion should be applied is the physical Minkowski space, 
it is instructive [also for the sake of  comparison with 
solution (4)] to start by looking at its properties in a 
Euclidean space. 

The asymptotic form of  our solution (18): 

A + l f  - t  a . g~ aT£f, (2o) 

does coincide with the asymptotic form, eqs. (5), (6), 
of the "instanton" solution and gives rise to the same 
value of  the Pontryagin surface integral (10). On the 
other hand, it is easy to see [from the commutator 
form of  eq. (18b)] that the pseudoscalar density (18b)] 
that the pseudoscalar density D ( x )  vanishes. The solu- 
tion of  this apparent paradox comes from the fact that 
the expressions for Fuu are singular at x -+ u and x -+ o. 
If one computes the surface integral f &  do u on two 
small spheres centered at the points x = u, x = u, 
respectively, one is led to the result 

D ( x )  = ½ q {84(x - u) + 84(x - v)}. (21) 

In this respect, our Euclidean result differs from 
solution (4) by the fact that in our case the pseudo- 
scalar density D ( x )  is concentrated in two points in- 
stead of  being spread over all space (uniformly oll the 

Adler hypersphere). In both cases the same values of 
the topological number emerge. 

The fundamental feature of  our expressions (18) is 
that they can be simply continued to the Minkowski 
space, leading to a solution which is non-singular and 
nonnalizable. 

As in the scalar case, we take - u .  = v .  = a .  and 
orient a .  along the time direction. We can now conti- 
nue to the Minkowski space time by setting x 4 = ix 0 
in eqs. (18), (19). 

The Minkowski vectors sc~ and wc~ will now take the 
form: 

1 t+ Y +  + _ 
su = 2 " 1 + t 2 ' 

, ) = = Y+ + Y,  , (22) ;v - i w ,  ~ " l + t2 

1,_+ 

From eqs. (18), (22), one clearly sees that our Minkow- 
ski solution is well-behaved asymptotically and is regu- 
lar everywhere. 

We see that our expression for t; ' ,v,  and therefore for 
"all observable quantities, depends solely on the vector 
w, .  As shown in eq. (22) the vector fie is always time- 
like (contained in the future light cone) and its modulus 
is given by 

- 1  
= 

@2 (1 + t2+)(1 + t{)  (23) 

It is also amusing to note that 

i ~ ( l + i t + ) ( l + i t )  

w u -  4 3 x .  l g ( 1 - i t + ) ( l  it ) '  
(24) 

The group theoretical meaning of  eq. (24) is clearly 
understood if one remarks that the surfaces 

- 4 1 g  (1 +i t+) (1  + it  ) - 2 < 8 < ~ ,  (25) 
( 1 - i t + ) ( 1 -  it ) = 6 ,  n 

are invariant under the (1,2, 3, 5) rotations and are 
transformed into each other by the (0, 6) rotations. The 
physical meaning of  our solution is simple exhibited by 
using a local Lorentz frame of  reference in which ~b 
is oriented along the time direction. In this frame, eq. 
(18b) becomes: 
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E = 0, H = 2 ig . (26) 
g (1+ t 2 ) ( l + t  2)  

Equation (26) clearly shows that the pseudoscalar den- 
sity D(x), which is proportional to the invariant pro- 
duct E .  H, vanishes everywhere. 

Our solution leads for the different quantities of  
physical interest the following expressions. 

Action. The Lagrangian density ~ is given by 

~ =  - ~ Tr FuuFUU = (12/g 2) (v)2) 2 

~ _ {  } 2 (27) =12  1 

(1 + t2) (1 + t z )  ' 

leading to a total action: 

A = f d ~  d3x dx 0 = 3n3/2g 2 . (28) 

lutions of  the Yang-Mills equations. In the latter case, 
we no longer have the beauty and excitement of  a non- 
vanishing topological number,  this has been given up 
in exchange for the property (essential in a Minkowski 
description) of  having finite non-vanishing energy 
and action. 

Our results indicate that much progress can still be 
expected by the combined study of the gauge and con- 
formal properties of  Yang-Mills theory*4.  

We wish to express our gratitude to S. Deser for his 
kind interest in this work and for his illuminating ad- 
vice and criticism. We also enjoyed fruitful discussions 
with C. Rebbi and G.C. Wick. 

Two of us (V.d.A. and G.F.) wish to thank the 
CERN Theoretical Physics Division for the warm hos- 
pitality extended to them. 

Energy momentum tensor. The tensor 0uv is given 

by 

0 .v  = - ½ Tr (FupFv  p - 4 ,  ±~'a~ Fath~ ~,,u~ ) 

_ 4 [4~bu~ u -  ~2guu}~2 , 
g2 

leading to a total energy: 

12 f d3x 3 7r 2 
E=fOood3x=~ ( 1 ~ x x 2 ) 4 - 2  ~ "  

(29) 

(30) 

We finally recall that, in the Minkowski framework, 
the Pontryagin number vanishes. 

The previous discussion clearly shows the comple- 
mentarity between the Euclidean and Minkowski so- 

~4 General relations between solutions of eqs. (1) and (2) have 
been recently discussed in a Princeton preprint by F. Wilczek. 
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